
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Classification of Customer Reviews using Sentiment
Analysis Techniques

Gregory McCord
Princeton University ’20

gmccord@princeton.edu

Abstract

One of the best ways for a company to receive feedback on its product is through
customer reviews like those on third party sites like IMDB or Amazon. A shoe
company like Nike or a film studio like Marvel Studios might seek feedback on
their most recent product before beginning development on the next generation
of products to cater to the desires of the customers. Companies may want to
gather several data points about their product from the reviews, but in general,
the major source of data they seek from a review is whether the customer felt
positively or negatively about their experience with the product. In this paper, we
address the problem of automating the process of determining the sentiment of
each customer in their review. We initially analyze 3000 customer reviews from
Yelp, IMDB, Netflix, and Amazon and classify them as either positive or negative.
We train the classifiers on bag-of-words representations of each review, with and
without feature selection. We find that most of the methods tested, especially the
Support Vector Machine, prove effective in classifying the data based on estimates
of misclassification rate and the area under the Receiver Operating Characteristic
(ROC) curve while the K-Nearest Neighbors classifier fell short. However, we
also observe the power of a pre-trained recursive neural network, which proves to
be even more effective than any of our classifiers.

1 Introduction

The need for sentiment analysis is everywhere. Companies need to understand how their products
are being received by consumers by reading reviews. However, it’s impractical for humans to read
thousands of reviews across the web in order to determine the general sentiment that people felt
about the product. Furthermore, there are countless places to pull these reviews from including
Twitter, Facebook, or any other website with a well-documented API. It is because this data can be
so easily retrieved that data analysis methods prove to be both useful, practical, and efficient.

In this paper, we evaluate 5 binary classification models for determining the sentiment of a review.
We modeled the reviews using a bag-of-words representation due to its spatial efficiency and scala-
bility. We evaluated the performance of the datasets with and without feature selection to highlight
the varying levels of effectiveness of different classification models and the benefits of using feature
selection.

2 Related Work

We have been unable to find evidence of published sentiment analysis research being done using this
same data set. However, there are likely hundreds of other Princeton COS 424 students who have
used this data set for their own projects before. Most will likely have used the bag-of-words imple-
mentation for their analysis, and some may have even tested the same set of classifiers. However,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

later we will present extensions that will likely not have been considered by other users of the data
set. It is unknown whether feature selection proved useful in their research.

2.1 Data Processing

We downloaded the 3, 000 reviews (2, 400 of which are training samples) on February 7, 2018 from
the course Piazza page. We used the Python NLTK library to tokenize, convert to lowercase, remove
stop words, lemmatize, stem using the Porter method, and filter out the words that occurred fewer
than 5 times in all of the reviews. Before feature selection, there were 541 words (features) in the
vocabulary. After feature selection there were 275 words in the vocabulary, which is approximately
50% of the original feature set. Feature selection was performed using a support vector machine
(SVM) with a linear kernel and `1 penalty. The hyperparameter for the SVM model feature selection
was tuned using 5-fold cross validation to obtain the ideal number of features. Feature selection and
tuning were performed exclusively using the training data.

2.2 Classification Methods

We used 5 classification methods from the SciKitLearn Python library [1]. All methods with the
exception of the Random Forest function had their corresponding hyperparameter tuned using 5-
fold cross validation. Each classifier was tuned for performance twice, once for the data with all of
the features present (N) and once for the data post-feature selection (FS). The Random Forest was
not tuned due to the lengthy training time per iteration and large number of iterations required to
properly tune it. The 5 classifiers used are:

1. Support Vector Machine with `1 penalty and linear kernel (SVM): the penalty parameter
was 0.2 for N and 0.9 for FS

2. Naive Bayes classifier (NB): using the multinomial variation; the smoothing parameter was
0.9 for N and 0.7 for FS

3. K-Nearest Neighbor (KNN): the number of neighbors was 5 for N and 9 for FS
4. Logistic Regression with `2 penalty (LR): the penalty parameter was 0.9 for N and 0.8 for

FS
5. Random Forest (RF): the number of trees was set to 500 for N and FS

2.3 Evaluation

For each classification method and feature set (either N for all the features or FS for post-feature
selection), we trained the data on the training set and evaluated the model on the testing set using
the corresponding feature set. As stated before, each model’s hyperparameter was tuned using the
same 5-fold cross validation folds before fitting the model and predicting the binary class labels on
the test data. We compared these models using the misclassification rate (MCR) and the area under
the Receiver Operating Characteristic (ROC) curve, which compares the true-positive rate (TPR) to
the false-positive rate (FPR). The characteristics can be defined as follows in terms of the number of
false positives (FP), true positives (TP), false negatives (FN), and true negatives (TN):

MCR =
FN + FP

FN + FP + TN + TP

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

3 Spotlight Classifier: Support Vector Machine

The Support Vector Machine (Vapnik, 1963) is a linear classification algorithm that finds a hyper-
plane that maximizes the margin between the two classes of samples in binary classification. Given
the data D = (x1, z1), ..., (xn, zn) where z ∈ {−1, 1} represents the binary classes, the SVM at-
tempts to define the hyperplane by the following equation:

wTx + w0 = 0

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

For SVMs, we also define the hinge loss, which represents our loss function for categorizing a
sample as +1 or −1. The hinge loss is defined as follows:

Lhinge(z, η) = max(0, 1− zη)

Lastly, we will introduce the slack term ξi, so instead of requiring ziηi ≥ 1, we now allow for
ziηi ≥ 1− ξi. This substitution has two benefits. First, it allows for us to use non-linearly separable
data by imposing a soft rather than hard constraint. Second, it gives us an optimization equation that
is differentiable since we are no longer worried about our original hinge loss function. This leads us
to the following optimization equation:

min
w,w0

1

2
‖w‖2 + C

N∑
i=1

ξi s.t. ξi ≥ 0, zi(xTi w + w0) ≥ 1− ξi, i ∈ {1, N}

We can then solve and find the minimum, which has the form:

ŵ =
∑
i

αizixi

This solution therefore defines our hyperplane. In fact, this is the hyperplane that maximizes its
distance from both the +1 and −1 classes. Additionally, αi is sparse due to the hinge loss function
(αi = 0 for any prediction |η| ≥ 1 where the prediction and truth z share the same sign). As such,
the xi where αi > 0 are known as support vectors because they define the hyperplane. These support
vectors additionally represent the selected features of the SVM model. In order to use the model for
prediction, we will return to our equation for our hyperplane, substituting in our estimate.

ẑ(x∗) = sgn

(
ŵ0 +

n∑
i=1

αizixTi x∗

)

To allow the method even more flexibility, we may use the kernel trick for defining the margin. It is
important to note that for our classifier in this experiment, we simply used the linear kernel.

ẑ(x∗) = sgn

(
ŵ0 +

n∑
i=1

αiziκ(xTi , x)
∗

)

The time to compute a prediction for future samples is directly proportional to the number of support
vectors (those variables contained within the margin of the hyperplane). As we did in our experi-
ment, it is possible to control the width of the margin to select additional features. By adjusting the
C term as seen before in the optimization equation C

∑N
i=1 ξi, we affect the weight of the sum of the

slack terms, which represent misclassified points. By increasing their weight, we force the model to
accommodate more errors and thereby select more features [4].

Before concluding, we must address the fundamental assumption that SVMs make about the data -
that the data are independent and identically distributed. While this is generally a fair assumption
to make, any samples that are dependent upon each other will lead to an improper model. For our
purposes however, knowing the sentiment or word content of another review in the training set did
not affect our prediction of the label of another in the same set. As such, it is a fair assumption to
make for our purposes.

4 Results

4.1 Evaluation of Results

As detailed before, we tested all 5 of our classifiers on both the FS and N datasets. We used the
misclassification rate as our primary point of comparison, but we reference the ROC scores as well,
because they help differentiate between similar models. We can see from the data in Table 1 some
striking statistics.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Classifier Feature Selection No Feature Selection
MCR ROC MCR ROC

SVM 0.182 0.881 0.178 0.890
NB 0.193 0.877 0.230 0.862

KNN 0.298 0.799 0.340 0.747
LR 0.182 0.887 0.197 0.877
RF 0.188 0.882 0.216 0.868

Table 1: Results from five classifiers on 600 reviews in the test set. For each classifier, we report
the Misclassification Rate (MCR) and the area under the ROC curve for both the data with the
selected features and the data with all of the features.

As expected, feature selection helped to reduce the noise in the data allowing most of the methods
to perform significantly more effectively. In fact, in all methods other than the Support Vector
Machine, the classifiers had a misclassification rate on the FS data that was on average 12% better
than the corresponding model’s misclassification rate on the N data. It then begs the question, why
did the Support Vector Machine, the model with the highest ROC score and lowest misclassification
rate, perform worse on the FS data? The answer lies in our data processing step. SVM performs
feature selection internally while it fits the model due to the support vectors. However, when we
performed feature selection, we also used the SVM to select features and removed all the others
in order to create the FS dataset. This creates overfitting however, because the SVM has already
removed the least indicative variables from the model, but it is now forced to remove even more,
thereby decreasing the model’s efficiency. On a similar note, the Random Forest classifier also
performs feature selection internally, but it’s ROC score on the FS data was significantly higher than
on the N data. This is likely due to the fact that the RF method found a certain set of features to
be more indicative of performance than the SVM, and because there was not much overlap between
those two sets, the act of selecting features using two different models actually helped to weed out
more noise for the random tree model than would have been the case otherwise.

We actually would have expected the Random Forest method with 500 trees to have performed even
better when compared with some of the other methods. Especially with a vocabulary of only 541
words in the N dataset, the RF method should have found more efficient branches to make. Similarly,
we also would have expected better from the KNN classifier, which was the worst performing clas-
sifier by a significant margin on both datasets. In both cases, we believe that the small sample size of
2400 reviews in the training data led to a small vocabulary, which ultimately caused these methods
to perform less efficiently. The RF method is a discriminative classifier and therefore thrives on
large datasets, which partly explains why it did not perform as well as expected. Similarly, KNN
relies on clustering, but with such a small test set, it is likely that there are no samples in the training
set that are very similar to samples in the testing set, leading to a pseudo-random classification of
some reviews. In both cases, large datasets should help to improve performance significantly. The
last question to answer would then be, why would the SVM method, which is also a discriminative
model, perform so well despite being dependent on large training sets? The answer lies in the fact
that most text is linearly separable, leading to strong performance of classifiers with a linear kernel
such as the SVM [2]. As a result of this tendency in text classification, linearly separable classifiers
such as the SVM naturally perform very well, even on data with small training sets.

4.2 Feature Selection

Top Selected Features
great love good bad excel
worst movi would wast poor
nice best amaz delici well

disappoint like fantast terribl film

Table 2: Top 20 predictive words in the model. The top 20 words were ranked according to
their Gini scores using the data set with the selected features. The words were identified using the
Random Forest classifier with 500 trees.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

We have already touched on the general approach to feature selection, but now we would like to
address some specific (stemmed) features that were selected as shown in Table 2. While sklearn
does not have a native way of determining the relevance of each of these important features for
classifying the data as either the positive or negative class, we can manually tag most of these quite
easily as seen in the Table 3.

Positive Sentiment
great love
good excel
nice best
amaz like
delici well
fantast

Negative Sentiment
bad

worst
wast
poor

disappoint
terribl

Table 3: Top 20 predictive words broken down into positive and negative categories. Note that
the 3 words with no clear positive or negative sentiment were held out from these charts, hence the
presence of only 17 features.

However, there are three terms that stand out as not obviously positive or negative - ”would”, ”film”,
and ”movi” (short for ”movie”). In the case of ”would”, the value of the feature seems to tie in
with other features that it is dependent on such as the features ”go” and ”never” (which would likely
heavily affect the positive or negative sentiment of the nearby terms). In the case of ”film” and
”movi”, it seems that the random forest classifier highly valued knowing the type of review before
classifying it.

5 Discussion and Conclusion

In this work, we compared 5 different classifiers on a data set with two different sets of features: the
N data which contained all features and the FS data which contained only those features selected
by the SVM during data processing. When considering the misclassification rate, the most effective
form of classification appears to be the SVM with `1 penalty and linear kernel with no feature
selection having already been performed, instead allowing the SVM to perform its own feature
selection. The standard logistic regression model also performed well on both data sets due to the
linear separability of most cases of sentiment classification. As the data shows, the KNN classifier
had a significantly higher misclassification rate, and therefore performed much worse, than all of the
other models.

We believe that there are many ways to extend this project in order to achieve even better results. The
first and most obvious method would be to increase the sample size by an order of magnitude or even
two. This would allow specifically the KNN and Random Forest methods to improve significantly
by introducing more features and improving clustering. Another way to extend the project would be
to test the data using more modern methods that are used in text classification today. One of the most
powerful NLP libraries used today is the Stanford CoreNLP library, which uses a recursive neural
network [3]. This pre-trained sentiment classifier classifies reviews as either positive, negative, or
neutral. We analyzed two different treatments when running the data through the model. In the
first case, we randomly assigned the 68 neutral reviews in the test case to either positive or negative
sentiment, which resulted in a misclassification rate of 0.176 (better than even the SVM). However,
when we factored out the neutral reviews, we found that the classifier had a misclassification rate
of 0.135, which was significantly better than any other classifier. This final rate demonstrates the
peak performance of the model, which could hypothetically be achieved by preventing the model
from classifying reviews as neutral. This classifier shows the magnitude of the effect of training
discriminative classifiers on massive data sets and on using the most powerful classifiers available
to the task at hand.

References

[1] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, and et al. Grisel O. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

[2] Thorsten Joachims. Learning to Classify Text Using Support Vector Machines. Springer-Verlag
New York Inc, 2002.

[3] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. The Stanford CoreNLP natural language processing toolkit. In Association
for Computational Linguistics (ACL) System Demonstrations, pages 55–60, 2014.

[4] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2013.

6

	Introduction
	Related Work
	Data Processing
	Classification Methods
	Evaluation

	Spotlight Classifier: Support Vector Machine
	Results
	Evaluation of Results
	Feature Selection

	Discussion and Conclusion

