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Abstract

Tractability studies the complexity of multivariate problems with respect to the accuracy ε and

the dimension d (number of variables) of the problem. Much research has gone into studying

different tractability criteria, each of which uniquely defines a class of problems that satisfy the

criterion. Two classic, prevalent notions are polynomial tractability and weak tractability. None

of these criteria, however, reflect the complexity of problems with respect to both the number of

bits in the dimension and the number of bits in the accuracy. Therefore, I propose the criterion

(lns d, lnt
ε−1)-weak tractability for some constants s, t > 0. A problem is (lns d, lnt

ε−1)-weakly

tractable if and only if its complexity is sub-exponential in lns d and lnt
ε−1. I analyze the general

case for linear multivariate problems and the specific case of s = t = 1 for linear tensor product

problems and provide theorems describing the necessary and sufficient conditions in each case.

1. Introduction

Over the past decade, many theoretical computer scientists have analyzed tractability criteria,

specifically those related to weak tractability. However, they have spent much of their time exploring

variations of the tractability criteria categorizing continuous multidimensional problems in terms of

their complexity. The complexity of a multidimensional problem typically depends on d and ε−1.

The tractability criteria impose restrictions on the scaling of the complexity of multivariate problems

with respect to d and ε−1. An interesting direction would be to study how imposing a more strict

constraint on the scaling of the cost with respect to the dimension affects which problems survive

the criterion. Specifically in this work, I analyze a criterion that studies multivariate problems with

respect to the number of bits in the accuracy and the dimension.



Let n(ε,d) be defined as the information complexity for a d dimensional continuous multivariate

problem S = {Sd}, for d ≥ 1. I will define Sd later in the cases of linear problems and linear tensor

product problems. The goal is to compute an estimate of S within accuracy ε , and the complexity

n(ε,d) represents the minimum number of information operations required to estimate a solution to

Sd within the error bound ε .

Before examining other criteria and exploring the motivation for my own, I define my criterion,

(lns d, lnt
ε−1)-weak tractability, as follows:

lim
d+ε−1→∞

lnn(ε,d)
lns d + lnt

ε−1 = 0 (1)

In general terms, it suffices to say that problems that survive this bound have costs that are not

exponential with respect to lns d and lnt
ε−1, for some s, t > 0.

2. Background and Related Work

Tractability was first studied under the constraints of polynomial tractability and weak tractability.

Polynomial tractability is defined as

n(ε,d)≤C ·dp
ε
−q,

for some C, p,q≥ 0 and has been studied in [5]. This criterion defines the class of problems solvable

in time that is polynomial with respect to the dimension and accuracy. However, polynomial

tractability is, in general, less relevant to my research and is included only for completeness.

Weak tractability on the other hand is a relevant and popular topic of research. Specifically, weak

tractability is defined as

lim
d+ε−1→∞

lnn(ε,d)
d + ε−1 = 0

and was analyzed in [5]. Weak tractability defines the class of problems that are solvable with cost

that is sub-exponential in both ε−1 and d. One important point to note is that sub-exponential in d
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includes the function n(ε,d) = e
√

d . More specifically, to satisfy weak tractability, an algorithm

must have complexity of the form n(ε,d) = eo(d+ε−1). You can also have a more general notion of

weak tractability called (s, t)-weak tractability, which is defined as

lim
d+ε−1→∞

lnn(ε,d)
ds + ε−t = 0

for s, t > 0. This criterion was proposed and analyzed extensively in [8] and defines algorithms

(similar to before) that satisfy n(ε,d) = eds0+ε
−t0 for s0 < s, t0 < t.

Alternatively, one could consider altering weak tractability in other ways by tweaking the

parameters themselves. As mentioned in Section-1, instead of considering the accuracy, one might

want to impose a more stringent requirement and require the cost to be sub-exponential with respect

to the number of bits in the accuracy lnε−1. This is called EC-WT, or exponential convergence-weak

tractability, and is defined as

lim
d+ε−1→∞

lnn(ε,d)
d + lnε−1 = 0,

which was studied extensively under [1–4]. While lgε−1 is the true number of bits in the accuracy,

since lgx and lnx are only a constant factor apart, the result extends from the base-e logarithm to

the base-2 logarithm.

Further generalizations brought the research from EC-WT to (lnk)-weak tractability, which was

studied in [6], provides the criterion

lim
d+ε−1→∞

lnn(ε,d)
d + lnk

ε−1
= 0

for k > 0. Now, we have the final iteration of weak tractability, which combines the principles of

(s, t)-weak tractability and EC-WT for (s, lnk)-weak tractability. Defined as

lim
d+ε−1→∞

lnn(ε,d)
ds + lnk

ε−1
= 0

this final criterion, studied in [7], shows the motivation for (lns d, lnt
ε−1)-weak tractability. In
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fact, the whole evolution of the tractability constraints demonstrate ways in which researchers have

tweaked the criteria, making them more stringent and then generalizing them. These variations

inspired my criterion and place it as the next evolution along the line of weak tractability research

requiring the cost to be sub-exponential with respect to the number of bits in the dimension.

3. Approach

The direction of this theoretical research has been fairly consistent since the beginning - to derive

the theorems that accurately describe the constraints on the problems that will survive my proposed

criterion. However, the nature of theoretical research in weak tractability is more streamlined than

this somewhat open-ended question. Since the different weak tractability criteria that I mentioned

in Section-2 share some similar characteristics, there were different things I could learn from the

approach. The analysis progressed somewhat in the following fashion:

1. Understanding the original proof for weak tractability

2. Understanding how the proof changed when substituting lnε−1 for ε−1 in EC-WT and

(lnk)-weak tractability

3. Deriving the specific case s = t = 1 for (lns d, lnt
ε−1)-weak tractability

4. Understanding how EC-WT further generalized when adding in exponents s,k for (s, lnk)-

weak tractability

5. Deriving the general case s, t > 0 for (lns d, lnt
ε−1)-weak tractability

My research began with learning about weak tractability and complexity theory in general before

beginning to understand and manipulate the proofs used in more nuanced criteria. By understanding

these techniques and how the criterion changed to satisfy a more stringent constraint on the accuracy

of the problem, I was able to apply similar techniques in my analysis of a more stringent constraint

on the dimension of the problem. This general flow continued until I successfully derived the

desired theorems for (lns d, lnt
ε−1)-weak tractability for linear problems. This result can be found
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in Section-5.1. In the case of linear tensor product problems, I was able to derive the base case -

s = t = 1. This result can be found in Section-5.2.

4. Setting

4.1. Information Based Complexity

Information Based Complexity (IBC) studies continuous multivariate problems and how they can

be solved using partial information. It is concerned with providing estimates to the solutions of

these continuous problems using only a subset of the provided d dimensional information. The goal

is to generate an estimate of the solution within ε of the true value. The motivation behind this is

that computers cannot truly process real valued functions. Rather, they sample functions and solve

equations based on these samples - the partial information. The complexity of this analysis refers

to the information complexity term - n(ε,d) - referred to earlier. Additionally, IBC analysis can

be done in the worst or average case. The analysis in this paper uses the worst case setting to find

restrictions that are necessary and sufficient for the (lns d, lnt
ε−1)-weak tractability criterion to be

satisfied. In other words, n(ε,d) is the minimum amount of information necessary to produce a

solution to the d dimensional problem with accuracy ε .

There are two different error definitions that are commonly used in the analysis of weak tractability

criteria - absolute (ABS) and normalized (NOR) error criteria. I will consider both in this paper. In

theorems and proofs, I will represent the general case (regardless of error criterion used) by using

CRId . As defined by [5], CRId = 1 for the absolute error case and the error of the zero algorithm for

the normalized error case (this will also be analyzed later). Therefore in this paper, I analyze my

weak tractability criterion using the absolute and normalized error criteria in the worst case setting.

4.2. Linear Multivariate Problems in the Worst Case

Linear multivariate problems are d dimensional problems that map continuous functions between

Hilbert spaces. These problems have been studied extensively in [5, Ch. 4.2, 4.4, 5.1]. I will now

summarize key findings and properties about the operators.

5



Consider the multivariate problem S = {Sd}. Sd is defined as Sd : Hd → Gd , where Hd and Gd

are both d dimensional Hilbert spaces. Let S∗d be defined as the problem that complements Sd

via the mapping S∗d : Gd → Hd . Further, S∗d is defined such that 〈Sd( f ),g〉Gd = 〈 f ,S∗d(g)〉Hd for

f ∈ Hd,g ∈ Gd where 〈 · , · 〉 is the dot product operator. Then, let

Wd = S∗dSd : Hd → Hd

be a compact, self-adjoint operator that is positive semi-definite with eigenvalues λd,1,λd,2, ... and

corresponding eigenvectors ed,1,ed,2, .... Assume that the eigenvalues are sorted in non-decreasing

order such that λd,1 ≥ λd,2 ≥ ...≥ 0. One point to note is that continuous linear operators such as

Wd have an infinite number of eigenvalues.

Define a linear algorithm to be

An,d( f ) =
n

∑
i=1
〈 f ,ed,i〉Sd(ed,i)

According to [5, Cor. 4.12], An,d( f ) has minimum worst case error among all algorithms that

estimate Sd( f ) using information from n continuous functionals, which begins to relate the error of

the linear algorithm to the information complexity n(ε,d). In fact, the corollary extends to say that

the minimal error in the worst case is defined by

ewor(n) = ewor(An,d) = sup
f∈Hd ,|| f ||Hd≤1

||Sd( f )−An,d( f )||=
√

λd,n+1.

Since the eigenvalues are non-decreasing, we can see that by increasing n, the number of continuous

functionals, we decrease the error of the linear algorithm. Therefore, we define the information

complexity as the minimum number of functionals to use in order to achieve error that is within our

error threshold (i.e. less than ε). That is,

n(ε,d) = min
{

n :
√

λd,n+1 ≤ ε ·
√

CRId

}
(2)
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or equivalently,

n(ε,d) =
∣∣∣{λd,i :

√
λd,i > ε ·

√
CRId

}∣∣∣ (3)

If there were only a finite, constant number of eigenvalues, then computing sufficient eigen-

values would be achievable in constant time with respect to the size of the problem. As be-

fore, CRId = 1 for ABS while CRId under NOR is the error of the zero algorithm. Since, if

n = 0 =⇒ A0,d( f ) = 0, we have that the error is just the largest eigenvalue, λd,1. That is, under

NOR, CRId = sup f∈Hd ,|| f ||Hd≤1 ||Sd( f )|| =
√

λd,1. Therefore, for CRId > 1, estimating Sd within

error ε is at least as easy as the absolute error case. The opposite holds for CRId < 1.

4.3. Linear Tensor Product Problems in the Worst Case

Now, I will discuss a specific case of linear problems - linear tensor product problems. These are

discussed extensively in [5, Ch. 5.2], but I will summarize the results and properties here. The d

dimensional tensor product problem is a d-fold tensor product of a one-dimensional (univariate)

linear problem. A tensor product is a generalization of the outer product that ultimately combines

lower dimensional Hilbert Spaces into higher dimensional ones. Specifically, consider the linear

problem in one-dimension S1 : H1→ G1 between Hilbert Spaces.

Consider S∗1 that is defined similarly as before. This leads to the compact, self-adjoint, positive

semi-definite operator

W1 = S∗1S1 : H1→ H1.

Let the eigenvalues of this one-dimensional operator be defined as follows (let d = 1 be implied for

simplicity of notation):

λ1 ≥ λ2 ≥ ...≥ 0

We define Hd =
⊗d

i=1 H1 and Gd =
⊗d

i=1 G1. Then, let

Sd =
d⊗

i=1

S1 : Hd → Gd
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be the d dimensional linear tensor product problem of interest. Finally, we have Wd = S∗dSd : Hd →

Hd defined as before. For general tensor products, we have that the eigenvalues of the resulting

operator are the products of all possible combinations of eigenvalues of the one-dimensional

problem. In other words, the eigenvalues and corresponding eigenvectors of the d dimensional

problem are defined as follows:

λd, j =
d

∏
i=1

λ ji , ed, j =
d⊗

i=1

e ji

for all j = [ j1, j2, ..., jd] ∈ Nd . I will make a slight addendum to the notation. We have that j is a

vector corresponding to the indices of the eigenvalues of the one-dimensional problem that combine

to form the d dimensional problem. Allow λd, j to represent a specific eigenvalue of Wd made up of

the j eigenvalues of W1. Let λd,i,∀i∈N be the ith largest eigenvalue of Wd . Similarly, let ed,i,∀i∈N

be the eigenvector corresponding to the ith eigenvalue. Note that the largest eigenvalue of Wd is a

product of the largest eigenvalue of W1 d times. That is, λd,1 = ∏
d
i=1 λ1 = λ d

1 .

Similar to Section-4.2, let the linear algorithm be defined as

An,d( f ) =
n

∑
i=1
〈 f ,ed,i〉Sd(ed,i).

For the same principles as before, we have that An,d( f ) is optimal and therefore has minimal error

for all estimates of Sd( f ) using information from up to n continuous linear functionals. The error in

this case therefore follows the same equation as before and is defined by

ewor(An,d) = sup
f∈Hd ,|| f ||Hd≤1

||Sd( f )−An,d( f )||=
√

λd,n+1.

Therefore, the information complexity is defined as before as

n(ε,d) =
∣∣∣{λd,i :

√
λd,i > ε ·

√
CRId

}∣∣∣ .
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However, due to the nature of λd, j, we can actually express this term in a more specific way for

linear tensor product problems. That is,

n(ε,d) =
∣∣∣∣{ j = [ j1, ..., jd] ∈ Nd :

√
λ j1 · · ·λ jd > ε ·

√
CRId

}∣∣∣∣ (4)

While seemingly more complicated, this is just the number of eigenvalues of Wd that are greater

than the error (times the error criterion used). As before, CRId = 1 for ABS and the error of the

zero algorithm for NOR. Since we derived the largest eigenvalue of Wd earlier, we now have that,

under NOR,

CRId = sup
f∈Hd ,|| f ||Hd≤1

||Sd( f )||=
√

λd,1 = λ
d/2
1 .

5. Results

5.1. Tractability of Linear Multivariate Problems

I study the case of general s, t > 0 for linear multivariate problems under the criterion (lns d, lnt
ε−1)-

weak tractability in the worst case setting. Let a linear multivariate problem be as defined in

Section-4.2. Note that I only consider d dimensional problems for d ≥ 2. More research is

necessary in order to understand the specific case of d = 1 under this criterion.

Theorem 1. Consider the non-zero linear multivariate problem S = {Sd} for compact linear Sd

defined over Hilbert spaces with d ≥ 2. We study the problem S for the absolute or normalized

error criterion in the worst case setting for the class of all linear functionals Λall . The problem is

(lns d, lnt
ε−1)-weakly tractable, for s, t > 0 iff

• we have

lim
j→∞

1

ln CRId
λd, j

(ln j)1/t = 0, and (5)
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• there exists a function f : (0,1/2]→ N, such that

M := sup
β∈(0,1/2]

1
β 1/t

sup
lns d≥ f (β )

sup
j≥dexp(

√
β lns d)e+1

1

ln CRId
λd, j

(ln j)1/t < ∞ (6)

Proof of Theorem 1. I proceed similarly to the proof of [5, Thm. 5.3] and the proof of [6, Thm. 3]

and adapt for s as in the proof of [7, Thm. 1]. First I will show that (lns d, lnt
ε−1)-weak tractability

is necessary for, and therefore implies, equations (5) and (6) before proving that these equations

are sufficient for (lns d, lnt
ε−1)-weak tractability. Without loss of generality, we may assume that

ε ∈ (0,1).

Let S be (lns d, lnt
ε−1)-weakly tractable. Then for every β ∈ (0,1/2], ∃Nβ > 0 such that for

all ε,d with lns d + lnt
ε−1 ≥ Nβ (where also ε ∈ (0,1) and d ≥ 2), we have lnn(ε,d)

lns d+lnt
ε−1 ≤ β ,

which implies n(ε,d) ≤ exp(β (lns d + lnt
ε−1)). We are interested in the eigenvalues for which

λd, j+1 ≤ ε2 ·CRId . From the definition of n(ε,d), we have

λd, j

CRId
≤ ε

2, for j = bexp(β (lns d + lnt
ε
−1))c+1

Therefore, by extension of the definition of j, we have

j = bexp(β (lns d + lnt
ε
−1))c+1

j−1≤ exp(β (lns d + lnt
ε
−1))

ln( j−1)≤ β (lns d + lnt
ε
−1)

ln( j−1)
β

− lns d ≤ lnt
ε
−1

ε
−2 ≤ exp

(
2
(

ln( j−1)
β

− lns d
)1/t

+

)

ε
2 ≤

 1

exp
(

2
(

ln( j−1)
β
− lns d

)1/t

+

)

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Note that + is used since we only observe ε ∈ (0,1), so its use appropriately limits the upper

bound of ε . Because λd, j
CRId
≤ ε2, we have

λd, j

CRId
≤

 1

exp
(

2
(

ln( j−1)
β
− lns d

)1/t

+

)


ln
(

CRId

λd, j

)
≥ 2 ·

(
ln( j−1)

β
− lns d

)1/t

+

1

ln
(

CRId
λd, j

) ≤ 1
2
·
(

β

ln( j−1)−β lns d

)1/t

+

for j = bexp(β (lns d + lnt
ε−1))c+ 1. For lns d + lnt

ε−1 ≥ Nβ > 0, we also get j = beβNβ c+

1,beβNβ c+2, ... by varying ε ∈ (0,1).

Here we see why d = 1 does not satisfy the equation. For d = 1 =⇒ lnd = 0. For small values of

β lnt
ε−1, we have j = 2. However, for j = 2,d = 1, the expression ln( j−1)−β lns d = 0, resulting

in an undefined upper bound for 1/ ln
(

CRId
λd, j

)
.

For the first part of the theorem, let d be fixed and j be sufficiently large. In that case, 1

ln
(

CRId
λd, j

) is

on the order of
(

β

ln j

)1/t
. For arbitrarily small β we have

1

ln
(

CRId
λd, j

) ≤ 1
2
·
(

β

ln j

)1/t

≤
(

β

ln j

)1/t

1

ln CRId
λd, j

(ln j)1/t ≤ β
1/t

lim
j→∞

1

ln CRId
λd, j

(ln j)1/t = 0, ∀d ≥ 2

which extends from the ε,δ definition of a limit. Therefore, we have demonstrated (5).

For the second part of the theorem, take a function f : (0,1/2]→ N, such that f (β ) = Nβ . For

lns d ≥ f (β ) and j ≥ deβ lns de+1≥ de
√

β lns de+1≥ 3 (since β ∈ (0,1/2], lnd > 0 for d ≥ 2 and
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√
β ≥ β ) we have

j = bexp(β (lns d + lnt
ε
−1))c+1 =⇒ j ≥ bexp(βNβ )c+1

which follows from lnd ≥ f (β ) = Nβ . Additionally, from above, we have

j ≥ de
√

β lns de+1

j−1≥ de
√

β lns de

j−1≥ e
√

β lns d

ln( j−1)≥
√

β lns d

This leads to

ln( j−1)≥
√

β lns d√
β ln( j−1)≥ β lns d

−
√

β ln( j−1)≤−β lns d

ln( j−1)−β lns d ≥ (1−
√

β ) ln( j−1)> 0, for j ≥ 3,β ∈ (0,1/2] (7)
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Therefore, by using our result from before and some algebraic manipulation, we have

1

ln
(

CRId
λd, j

) ≤ 1
2
·
(

β

ln( j−1)−β lns d

)1/t

+

1
β 1/t
· 1

ln
(

CRId
λd, j

) ·(ln j)1/t ≤ 1
2
·
(

ln j
ln( j−1)−β lns d

)1/t

+

≤

(
ln j

(1−
√

β ) ln( j−1)

)1/t

+

(from (7))

=

(
ln j

ln( j−1)
· 1

1−
√

β

)1/t

+

≤
(

ln3
ln2
·(2+

√
2)
)1/t

< ∞ (inputs that maximize value)

which demonstrates that the maximum possible value of the equation is finite based on the supre-

mums of β and j ≥ de
√

β lns de+1 as well as the constraint lns d ≥ f (β ) = Nβ > 0. Note that the

above would be undefined if lnd = 0 =⇒ j = 2. This leads to the result in (6). That is,

M := sup
β∈(0,1/2]

1
β 1/t

sup
lns d≥ f (β )

sup
j≥dexp(

√
β lns d)e+1

1

ln CRId
λd, j

(ln j)1/t < ∞

Now we assume that the conditions (5), (6) hold. We demonstrate that they are sufficient for

(lns d, lnt
ε−1)-weak tractability.

From condition (5), we have that for any β ∈ (0,1/2], ∃Cβ ∈ Z>2 such that ∀ j ≥ Cβ and

lns d < f (β ) =⇒ d = 2,3, ...,bexp( f (β )−1)1/sc (since (5) holds for d ≥ 2) the following holds

1

ln CRId
λd, j

≤ β

(ln j)1/t

λd, j

CRId
≤ exp−1

(
(ln j)1/t

β

)

As a result, we have λd, j ≤ ε2 ·CRId for j = de(2β lnε−1)te. We can recover the previous equation
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through algebraic manipulation

j = de(2β lnε−1)t
e ≥ e(2β lnε−1)t

(ln j)1/t ≥ 2β lnε
−1

(ln j)1/t

β
≥ lnε

−2

ε
2 ≥ exp−1

(
(ln j)1/t

β

)
λd, j

CRId
≤ exp−1

(
(ln j)1/t

β

)
≤ ε

2

Using the inequality dxe ≤ 2x for x ≥ 1, we have λd, j ≤ ε2 ·CRId for j = de(2β lnε−1)te ≤

2e(2β lnε−1)t
. Therefore, we get

n(ε,d)≤max
(

Cβ ,2e(2β lnε−1)t
)

(8)

We now consider the case where lns d ≥ f (β ). Condition (6) implies that for every β ∈ (0,1/2]

and j ≥ dexp(
√

β lns d)e+1 we have

1

ln CRId
λd, j

≤M
(

β

ln j

)1/t

< ∞

λd, j

CRId
≤ exp−1

(
M−1

(
ln j
β

)1/t
)

As a result, we have λd, j≤ ε2 ·CRId for j = deβ (2M lnε−1)te. Therefore we have j =max(dexp(
√

β lns d)e+

1,deβ (2M lnε−1)te). From the inequality dxe ≤ 2x for x≥ 1, we get that the information complexity is

n(ε,d)≤max(2e
√

β lns d +1,2eβ (2M lnε−1)t
) (9)
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From (8), (9) we get

lnn(ε,d)
lns d + lnt

ε−1 ≤max
(

lnCβ

lns d + lnt
ε−1 ,

(2β lnε−1)t

lns d + lnt
ε−1 +

ln2
lns d + lnt

ε−1 ,

β (2M lnε−1)t

lns d + lnt
ε−1 +

ln2
lns d + lnt

ε−1 ,

√
β lns d

lns d + lnt
ε−1 +

ln2
lns d + lnt

ε−1

)

For sufficiently large lns d + lnt
ε−1, the terms involving the constants (Cβ and ln2) in the numer-

ator run to 0. Additionally, the maximum value for lns d
lns d+lnt

ε−1 and lnt
ε−1

lns d+lnt
ε−1 is ≤ 1. Therefore we

get

lnn(ε,d)
lns d + lnt

ε−1 ≤max
(
(2β )t ,β (2M)t ,

√
β

)

which implies

lim
d+ε−1→∞

lnn(ε,d)
lns d + lnt

ε−1 = 0

via the ε,δ definition of a limit since β can be arbitrarily small which in turn implies that S is

(lns d, lnt
ε−1)-weakly tractable. �

5.2. Tractability of Linear Tensor Product Problems

Moving on from the tractability of linear problems, I study the tractability of linear tensor product

problems for the absolute error criterion for the class of all linear functionals Λall in the worst

case. Let a linear tensor product problem be as defined in Section-4.3. Consider the case of λ2 = 0.

We have a trivial case since, for any λ1 ≥ 0, λd,1 = λ d
1 and λd,i = 0 for i > 1 =⇒ n(ε,d) ≤ 1.

Additionally, consider the cases λ1 = λ2 = 1 and λ1 > 1,λ2 > 0. In fact, according to Theorem 5.5

in [5], both of these cases are intractable for less stringent definitions of weak tractability. Therefore,

for (lns d, lnt
ε−1)-weak tractability, they are also intractable. We now consider the case of λ1 ≤ 1

and λ2 ∈ (0,1).

Theorem 2. Consider the linear tensor product problem S = {Sd} in the worst case setting. For the
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absolute error criterion and for the class of all linear functionals Λall , where λ1 ≤ 1 and λ2 ∈ (0,1)

we have

• S is not (ln1 d, ln1
ε−1)-weakly tractable.

This theorem states that, for s = t = 1, there are no linear tensor product problems such that

(lns d, lnt
ε−1)-weak tractability holds when the first two eigenvalues of the one-dimensional problem

S1 satisfy λ1 ≤ 1 and λ2 ∈ (0,1). At this time, it is unknown what the precise bounds are for general

s > 1 or t > 1 (or both) under this criterion.

Proof of Theorem 2. I proceed similarly to the proof of [6, Thm. 4]. First, we will consider the

case of λ1 = 1 and λ2 ∈ (0,1). Take j ∈ Nd such that

λd, j =
d

∏
i=1

λ ji > ε
2

Let k be the number of indices ji that are greater than 1. We have

λ
k
2 = λ

d−k
1 λ

k
2 ≥ λd, j > ε

2

since λ1 = 1 by assumption for the first case and by definition of n(ε,d) for linear tensor product

problems. Since the eigenvalues of the one-dimensional problem are sorted in non-increasing order,

we know that λi ≥ λ j, i < j. Therefore,

λd, j = λ
d−k
ji ∏

i: ji>1
λ ji = ∏

i: ji>1
λ ji

which is upper bounded by λ k
2 . There are

(d
k

)
ways to select the d values of ji (where ji ∈ {1,2},∀i∈

[d]). Therefore, since we have at least
(d

k

)
eigenvalues, all of which are greater than ε2, it extends

that

n(ε,d)≥
(

d
k

)
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Consider error εd such that

λ
(bd/2c+1)/2
2 < εd < λ

bd/2c/2
2

This is equivalent to ε2
d < λ

bd/2c
2 , which by parallel implies k = bd/2c. Therefore,

n(εd,d)≥
(

d
bd/2c

)
≥ 2bd/2c

where the final inequality comes from

(
d
bd/2c

)
=

d!
(d−bd/2c)!bd/2c!

≈
√

2πd
(d

e

)d√
2π(d−bd/2c)

(
(d−bd/2c)

e

)d−bd/2c√
2π(bd/2c)

(
(bd/2c)

e

)bd/2c

via Stirling’s Approximation. For large d, this becomes

(
d
bd/2c

)
≈

√
2πd

(d
e

)d(√
πd
( d

2e

)d/2
)2 (large d)

=

√
2
(d

e

)d

√
πd
( d

2e

)d

=

√
2

πd
·2d

≈ 2d (large d)

≥ 2bd/2c

Now we can see that in this case (ln1 d, ln1
ε−1)-weak tractability does not hold. Let ε = εd (ε is

fixed) with d→ ∞. Note the following two inequalities: bxc> x−1,∀x and bx/2c+1≤ x,x≥ 1.
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Then we get

lim
d→∞,

λ

bd/2c+1
2

2 <εd<λ

bd/2c
2

2

lnn(ε,d)
lnd + lnε−1 > lim

d→∞

lnn(ε,d)

lnd + bd/2c+1
2 lnλ

−1
2

≥ lim
d→∞

bd/2c ln2

lnd + bd/2c+1
2 lnλ

−1
2

≥ lim
d→∞

(d
2 −1

)
ln2

lnd + d
2 lnλ

−1
2

= lim
d→∞

(1
2 −

1
d

)
ln2

lnd
d + 1

2 lnλ
−1
2

=
ln2

lnλ
−1
2

> 0

which implies that S is not (ln1 d, ln1
ε−1)-weakly tractable. Next, we consider the case λ1 < 1 and

λ2 > 0. Some results extend from the previous part of the proof. Namely, for k = bd/2c we have

n(εd,d)≥
(

d
bd/2c

)
≥ 2bd/2c

Similar to above we let k be the number of indices ji > 1. We therefore have

λ
d−k
1 λ

k
2 ≥ λd, j > ε

2

Since λ1 < 1, we will now choose error εd such that

λ
(d−bd/2c−1)/2
1 λ

(bd/2c+1)/2
2 < εd < λ

(d−bd/2c)/2
1 λ

bd/2c/2
2

18



Now we will follow a similar derivation as before. Let ε = εd with d→ ∞. Then we get

lim
d→∞,

λ

d−bd/2c−1
2

1 λ

bd/2c+1
2

2 <εd<λ

d−bd/2c
2

1 λ

bd/2c
2

2

lnn(ε,d)
lnd + lnε−1 > lim

d→∞

bd/2c ln2

lnd + d−bd/2c−1
2 lnλ

−1
1 + bd/2c+1

2 lnλ
−1
2

≥ lim
d→∞

(d
2 −1

)
ln2

lnd + d−bd/2c−1
2 lnλ

−1
1 + d

2 lnλ
−1
2

≥ lim
d→∞

(d
2 −1

)
ln2

lnd + d
2 lnλ

−1
1 + d

2 lnλ
−1
2

= lim
d→∞

(1
2 −

1
d

)
ln2

lnd
d + 1

2 ln(λ−1
1 λ

−1
2 )

=
ln2

ln(λ1λ2)−1 > 0

which implies that S is not (ln1 d, ln1
ε−1)-weakly tractable. �

6. Future Work

There are several cases that I’ve mentioned that will require additional work. Specifically, there

remains the case of d = 1 for linear multivariate problems. As mentioned before, when you take lnd

for d = 1, you get 0. Normally this isn’t a problem, however there are some cases where lnε−1 is

small such that division might result in an undefined result. More analysis is necessary to see what

case these types of problems degenerate into. That is, for d = 1, what form does the information

complexity take and how does this react with my criterion.

Additionally, the analysis of linear tensor product problems in the general case for s > 1 or

t > 1 (or both) remains open. In particular, it would be interesting to find necessary and sufficient

conditions on the rate of decay of the eigenvalues of the linear tensor product problems that satisfy

the criterion.

Finally, in this paper, I have done analysis using the absolute and normalized error criteria in

the worst case setting for linear and linear tensor product problems. However, information based
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complexity analysis can also be used to study the average case of these problems under different

criteria. Future research could consider this criterion in the average case setting or introduce other

error criteria (apart from ABS and NOR). Further, researchers could also apply this criterion to a

wider group of problems - not just linear and linear tensor product problems.

7. Conclusion

Over the years, there has been much research into different weak tractability criteria. From the

original criterion to EC-WT to (lns d, lnt
ε−1)-weak tractability, each new evolution altered the

parameters slightly to either generalize or impose more stringent constraints on a previous iteration

of the criterion. With each newly proposed criterion came the goal of understanding how these

changes affected the class of problems that survived the bound. Finding a class of problems that

survive a tractability criterion is equivalent to stating necessary and sufficient conditions for the

problems to satisfy the criterion. Theorem 1 details the bounds for the general case of linear

multivariate problems while theorem 2 states that the criterion cannot be satisfied for the case of

s = t = 1 for linear tensor product problems. More analysis is necessary to derive the conditions for

the general case.
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